The assessment of natural atmosphere corrosivity by the use of electrochemical noise analysis

V. Torres-Mendoza, F.J. Rodriguez-Gómez, E.M. García-Ochoa and J. Genesca

Departamento Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México

Abstract

Purpose – The aim of this work is to evaluate the electrochemical noise (EN) method as a way of evaluating quickly the aggressiveness of natural atmospheres.

Design/methodology/approach – Wire-on-bolt tests were used, which implies an exposure of at least three months of bimetallic specimens such as aluminium wire/steel bolt and aluminium wire/copper bolt (CLIMAT units). Electrochemical noise measurements (ENM) also were used.

Findings – EN is a powerful tool in the assessing of aggressiveness of atmospheres in short time exposure. Statistical analyses of EN were carried out and provided clear differences between atmospheres depending on pollutants. Results of noise resistance \(R_n \), root mean square of current \(I_{rms} \) and localization index are discussed.

Research limitations/implications – The possible application of ENM to atmospheric corrosion is interesting from a practical point of view. However, more experiments are necessary in order to test a wide range of atmospheres.

Practical implications – EN has proved to be a useful tool when localised corrosion is detected and the presence of chlorides in atmospheres, due to sea fog, results in pitting on the metallic samples.

Originality/value – Illustrates that electrochemical noise can be a powerful tool for assessing the aggressiveness of natural atmospheres.

Keywords Atmospheric corrosion, Electrochemistry, Noise

Paper type Research paper

Introduction

Electrochemical techniques have been used for a long time as a time-of-wetness register. Developments of these devices (González et al., 1990) have been reported in literature, as well as the application of electrochemical techniques to study the prevailing atmospheric conditions in a particular atmospheres (Tsuru et al., 1999; Tres et al., 1998). From the existing electrochemical techniques, electrochemical noise measurements (ENM) seems to be a promising and powerful tool to determine corrosion rates and mechanisms (Tan, 1999; Cottis and Turgoose, 1999; Rothwell and Eden, 1992). Recently, electrochemical noise (EN) has been promoted as a tool for both corrosion science and corrosion engineering.

Historically, outdoor atmospheric corrosion sites have been performed at various test sites in many countries (Ailor, 1982). In México, a large number of test sites, designated as rural, urban, marine and industrial have been used to develop corrosion test data. There are no universally accepted quantitative demarcations between the constituents that typify atmospheric environments. Therefore, distinctions are often based on qualitative and semi-quantitative factors. For instance, marine environments are characterized by the presence of airborne salt as the major corrosive constituent transported from the ocean. In comparison, sulphur dioxide \((SO_2) \) is the primary component in industrial and urban atmospheres. Environments containing relatively low levels of pollutants are considered rural. The effect of chloride in atmospheric corrosion has been underlined by several authors. Tests have been developed in order to assess the aggressiveness of an atmosphere on metals, but these evaluations imply a long-term exposure. Metal sheets exposed to an aggressive environment could yield a gravimetric estimation of corrosion rate. However, this test requires years to be carried out.

Inspiration for the technique used in the present work was taken from work by Compton et al. (1955) of Bell Laboratories. Included in their methods to obtain a quantitative assessment of the extent of galvanic corrosion between any two metals was a bolt and wire type galvanic couple, which permitted weight loss determination of the anodic member (wire) of the couple. Doyle and Wright (1982) at Alcan Laboratories developed the Bell method to determine not only quantitative data on galvanic couples but also to characterize the corrosivity of the atmosphere at the test locations. In order to avoid cumbersome descriptions of the test it has been termed the CLIMAT test (CLassify Industrial and Marine ATmospheres) and the test units CLIMAT units (Morchillo and Feliu, 1977; Genesca and Rodriguez, 1992; Flores and Palma, 1993; Calderon and...
Arroyave, 1998; Mariaca et al., 1999). The test period is only 90 days. Despite this short period, the fact that the exposures are carried out in the natural environments significantly improves the credibility of the results. A correlation of CLIMAT data with service experience has been published (Doyle and Godard, 1969). The samples consist of aluminium wire coiled on a metallic screw (bolt) usually copper or steel (copper is preferred if the atmosphere is of the marine type, but steel is used if the atmosphere is industrial). This test has proved to be highly effective in the classification of atmospheres in three-month exposures.

On the other hand, electrochemical techniques are a useful tool in determining the corrosion rate, but their use in atmospheric corrosion has been limited to some studies in order to record the time-of-wetness. González et al. (1990) proposed the use of a multi-layer cell made of metallic sheets forming a galvanic couple; this device develops a peak in galvanic current values when the surface of the probe is wet, even if this layer is invisible.

The aim of this work was to characterise natural atmospheres by using EN as a tool. A multi-layer cell analogous to the Gonzalez' cell was used.

Experimental

The electrochemical monitor for atmospheric corrosion (EMAC) has been described in a previous paper (García-Orchoa et al., 2002) as being made of low carbon steel sheets (AISI 1018), alternated with plastic sheets, joined with a plastic screw and embedded in epoxy resin in order to show a multi-layer surface.

ENM, were carried out in three different atmospheres: City University, Mexico City (urban type atmosphere), Villahermosa (urban tropical environment), and Coatzacoalcos (industrial tropical environment) (Table I). The location of these three testing sites is shown in Figure 1.

Mexico is located between the latitudes 15° and 30° N and the longitudes 86° and 116°. Two-thirds of the country is located in the tropics, including 90 per cent of the coastal regions on the Gulf of Mexico. The geographical characteristics of Mexico are varied, from the large hot regions in the north, the high central mountainous region, including Mexico City, to the flat, heavily vegetated regions of the southern and eastern coast of the Gulf of Mexico. The most easterly section of Mexico includes the Yucatan Peninsula, a flat limestone tableland which is rich in Mayan culture and tradition. Mexico's west coast, bordering the Gulf of Mexico, is a region of agriculture and fishing, where the inhabitants have maintained their traditional living style, in contrast to the more popularly known tourist resorts on the east coast along the Caribbean Sea from Cancun and Cozumel in the north to Chetumal 400 km to the south. The four main climatic zones in Mexico are shown in Figure 1 (Mariaca et al., 1999) along with the location of cities in which atmospheric exposure sites are located. The region along the Gulf of Mexico is classified as Humid Tropical, having a mean annual relative humidity (rH) greater than 75 per cent and mean precipitation greater than about 1,500 mm/yr. The mean annual temperature is greater than 26°C which is about the same temperature as the Gulf waters in this region. One interesting exception to this classification is the north-west corner of the Yucatan Peninsula which is classified as Arid (Mariaca et al., 1999).

City University in Mexico City is a very well known site to test atmospheric corrosion, since it has been evaluated for years and reported recently (Mariaca et al., 1999). The city of Villahermosa is not very far from the Gulf of Mexico and has a very humid tropical weather. On the other side, Coatzacoalcos is a commercial port with oil industry. rH was given from meteorological stations in each site.

Noise measurements were carried out with a Gill ZRA equipment, sampling 2,048 points at a frequency of two points per second. Potential and current fluctuations were recorded every two hours throughout one week. In Mexico City, measurements were carried out four times in a four-month period, while in Villahermosa, noise measurements were recorded in a three-month period; in both cases once a month. In Coatzacoalcos, measurements were taken during one week.

Analysis methods for EN data can be separated into three categories:
1. Deterministic;
2. Statistical; and
3. Spectral (Kelly et al., 2003).

Statistical methods were found to be particularly useful for the analysis of EN data, and are the most popular techniques. The potential difference and coupling current signals are monitored with time. The signals are then treated as statistical fluctuations about a mean level. Amplitudes are calculated as the standard deviations root-mean-square (rms) of the variance.

In this work, EN analysis was made with statistical tools. This statistical analysis involved the estimation of the EN resistance (\(R_n\)) in terms of the standard deviations of the voltage and current data, as a measurement of corrosion aggressiveness, as well as the rms of current (\(I_{rms}\)) as a measurement of corrosion products layer's stability. Finally, localization index (LI) parameter is used for identifying the type of corrosion, specifically localized corrosion.

Evaluation of atmospheric galvanic corrosion was made according to ASTM G 116-93, “Standard practice for conducting wire-on-bolt test for atmospheric galvanic corrosion”. The wire-on-bolt test has been used extensively under the name CLIMAT test to determine corrosivity of atmospheres.

Wire-on-bolt assemblies (CLIMAT units) were installed in City University, Mexico City and Villahermosa, where the industrial corrosivity index (ICI), and marine corrosivity index (MCI), were calculated.

The Al/steel and Al/Cu, wire and bolt combinations have varied sensitivities depending upon the atmosphere. This is due to the variation in the galvanic corrosion between the materials.

Table I Predominant atmosphere at the Mexican testing sites

<table>
<thead>
<tr>
<th>Location</th>
<th>Atmosphere type</th>
<th>Salient features</th>
</tr>
</thead>
<tbody>
<tr>
<td>City University,</td>
<td>Highland, rural</td>
<td>2,300 m above sea level</td>
</tr>
<tr>
<td>México City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Villahermosa,</td>
<td>Urban</td>
<td>Tropical urban area</td>
</tr>
<tr>
<td>Tabasco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coatzacoalcos,</td>
<td>Marine/industrial</td>
<td>Large industrial center</td>
</tr>
<tr>
<td>Veracruz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anti-Corrosion Methods and Materials

Volume 53 · Number 6 · 2006 · 348–356

The assessment of natural atmosphere corrosivity

V. Torres-Mendoza et al.
It has been reported (Doyle and Wright, 1982) that the Al/Cu combination responds strongly to both marine and industrial sites, whereas the Al/steel combination responds strongly only to marine sites and is relatively indifferent to industrial sites. Because of this enhanced sensitivity, CLIMAT coupons can be conveniently exposed for a short time period of three months, thereby allowing seasonal variations in corrosivity to be determined. The enhanced sensitivity also facilitates differentiation of atmospheric corrosivity on the micro-environmental scale. CLIMAT corrosivity indices are derived from the percentage mass loss measured on the aluminium wires after the exposure period.

Results

Noise resistance (R_n)

EN resistance is defined (Cottis and Turgoose, 1999) as a resistance that is comparable to a linear polarization resistance, but estimated from EN parameters. The EN resistance, R_n, is calculated as the standard deviation of potential divided by the standard deviation of the current, as follows:

$$R_n = \frac{\sigma_V}{\sigma_I}$$

where the value of R_n can be taken as R_p and then inversely proportional to corrosion rate according to the Stern-Geary equation, but with the necessary condition that a trend removal is applied over a baseline, as previously established (Tan, 1999).

México City

During the first week of exposure, noise measurements were carried out. They are not shown in this report due to some mistakes in data collection. However, during the second week of measurements (i.e. second month of exposure) a correspondence between R_n and relative humidity (rH) was detected (Figure 2(a)).

Villahermosa

rH showed oscillations similar to those obtained in México City during the sampling week, Figure 3(a) and (b), but oscillations were not as large in Villahermosa as they were in México City. In México City, rH can change from 20 to 90 per cent in hours, while in Villahermosa these changes are from 50 to 90 per cent (Figure 3(a) and (b)).

Coatzacoalcos

Unfortunately, in Coatzacoalcos, that has been reported as having a very aggressive atmosphere, the site of measuring was located in a place with predominant winds that blow against the industrial plants, so pollutants were not forced to act over the metallic samples. However, the EMAC was sensitive enough to show a low R_n value when compared with Villahermosa and México City. Therefore, this proves that this electrochemical device is not only a time-of-wetness detector, but also a pollutant detector and, as a consequence, an atmospheres’ aggressiveness detector (Figure 4).

Wire-on-bolt test

The wire-on-bolt test was traditionally used to monitor and evaluate the corrosivity of the environment. The interpretation of the results is based on per cent mass loss, normalized to 90 days exposure, of aluminium wire specimens wrapped around either steel and/or copper bolts. The aluminium-wire/steel-bolt and aluminium-wire/copper-bolt combinations were used for classifying the corrosivities of marine and industrial environments, respectively. After the exposure period, the per cent mass loss of the wires was determined and used for a qualitative classification of the corrosivity of the atmospheric environment, e.g. negligible, moderate, moderately severe, severe, or very severe.

The per cent mass loss from the Al/steel combination is generally regarded as the MCI and the per cent mass loss from the Al/Cu combination is generally regarded as the ICI. The CLIMAT indices (percent weight losses in 90 days) for aluminium wires wound onto mild steel and copper bolts at
two locations are shown in Table II. The indices were adjusted by subtracting the small amount of corrosion that occurred on aluminium wires wound onto plastic rods at each site. Thus, the results reflect the increase in the amount of corrosion caused by galvanic influences.

Discussion

México City

It has been reported in literature (Ailor, 1982; Mariaca et al., 1999) that atmospheric corrosion occurs only at a rH higher than 80 per cent, when the metallic surface is wet. According to this statement,
Figure 3 Noise resistance values in Villahermosa: (a) during a week in the first month of exposure; (b) during a week in the second month of exposure

Figure 4 Noise resistance values in Coatzacoalcos during a week of exposure
it can be established that just over the 80 per cent, the noise resistance measurement is meaningful. Actually, there was a very high oscillation in rH in a one day term, but when rH was over 80 per cent, there was a clear correspondence with a minimum in R_n.

During the third week of measurements in México City (Figure 2(b)), there was a storm that “cleaned” the metallic surface, resulting in a diminishing of R_n in almost four orders of magnitude (the rH corresponded to very high values during the storm). This cleaning was not very efficient, as it could be concluded from the value of 1.00×10^{06} Ohm as an R_n after the storm. However, the re-formation of corrosion products layer took about 35 h after removing the oxide film. During the first two days of this week, the relation between high rH and low R_n fitted quite well.

No great variation could be detected during last week of measurement corresponding to the fourth month (Figure 2(c)). Again, R_n values were between 1.00×10^{09} and 1.00×10^{10} Ohm as shown in Figure 2(a) and (b).

Villahermosa

Again, when the rH was higher than 80 per cent, a good correlation with low values of R_n was detected. It is important to say that Villahermosa is characterized for a tropical humid weather, but it is also an urban atmosphere with no great presence of pollutants, even though an oil industrial area is not very far from there. This fact results in an average R_n value around 1×10^{07} Ohm growing in relation to time.

During the second week of measurements in Villahermosa (Figure 3), three days of an almost continuous rH over 70 per cent resulted in low values of R_n in the range of 1.00×10^{06} Ohm. This correlation between rH and noise resistance as an atmosphere’s aggressiveness measurement was also found during the third week of experiments. R_n values in Villahermosa were lower than those obtained in México City, maybe as a signal of the presence of chloride or sulphur which origin is in the Gulf of México. This location is not very far from Villahermosa, and the oil industry facilities. In previous studies, it has been demonstrated that a low concentration of chloride or sulphate is enough to promote corrosion in a very large rate, but changing pollutant’s concentration is not very significant in promoting corrosion.

Root mean square of current, I_{rms}

The rms value is similar to the standard deviation, but calculated without removing the mean from the data (Cottis, 2001) and can be defined as the square root of the average value of the square of the current (without subtracting of the mean). In practical terms, it is a measure of the power available from the signal, including the effect of any dc or mean current (Cottis and Turgoose, 1999).

Table II Results of wire-on-bolt test

<table>
<thead>
<tr>
<th>Site</th>
<th>Galvanic couple Al/Fe (aluminium wire/steel bolt)</th>
<th>Galvanic couple Al/Cu (aluminium wire/copper bolt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marine corrosivity index, MCI</td>
<td>Mariner influence</td>
</tr>
<tr>
<td></td>
<td>Atmosphere type</td>
<td>Industrial corrosivity index, ICI</td>
</tr>
<tr>
<td></td>
<td>Classification</td>
<td>Significance</td>
</tr>
<tr>
<td>México City</td>
<td>0.0745</td>
<td>Negligible</td>
</tr>
<tr>
<td></td>
<td>0 (0 < MCI < 2)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Negligible</td>
<td>Rural area</td>
</tr>
<tr>
<td>Villahermosa</td>
<td>0.0965</td>
<td>Negligible</td>
</tr>
<tr>
<td></td>
<td>0 (0 < MCI < 2)</td>
<td>0.0630</td>
</tr>
<tr>
<td></td>
<td>Negligible</td>
<td>Rural area</td>
</tr>
</tbody>
</table>

México City

In general, terms, the values of I_{rms} are related to the corrosion products layer’s stability. The lower the value, the more stable the film.

In Figure 5(a) and (b), the results from I_{rms} for México City are shown. It is clear that the stability of the layer is growing with time, and in the second week of measurements (second month), after the storm, the value of I_{rms} grew suddenly, in good agreement with R_n value, re-forming the corrosion products as told before.

Villahermosa

During the first week of measurements, I_{rms} showed a tendency to low values, i.e. a stable layer of corrosion products could be formed, in the same way as in México City. In the second week of measurements, however, some days of high rH were detected and the stability of corrosion products layer diminished as a result of wetting of oxides, since the rH needed for total wetness is lower in the rust’s capillary paths.

Coatzacoalcos

The higher values of the three sites regarding I_{rms} were found in Coatzacoalcos. It is important that even if predominant wind does not favour the corrosion on EMAC, nevertheless, the rust layer is unstable due to the presence of sulphur (mainly as sulphide) in atmosphere. Again, this is an evidence of the EMAC’s sensitivity, because even low concentration of sulphur results in a very clear value in EN data.

Localization index (LI)

The localization parameter or LI is the standard deviation of the current noise divided by the rms current. In this case, the actual value will always be between 0 and 1, with a value approaching 1 implying a large standard deviation compared with the mean, and a value approaching 0 corresponding to a small standard deviation compared with the mean (Cottis and Turgoose, 1999).

México City

The values of LI in México City showed mixed corrosion as detected in a previous work (Garcia-Ochoa et al., 2002) due to the presence of crevice but also of small amounts of pollutants. When rH is over 80 per cent, LI clearly shows a mixed corrosion process. A clear example of this phenomenon is shown in Figure 6.

Villahermosa and Coatzacoalcos

The same behaviour of México City results was found in Villahermosa. In Coatzacoalcos, however, there was a difference, as it can be seen in Figure 7. In Figure 7, LI values are over 0.1 during almost all the data collection, resulting in a localized corrosion process. Once again, this is a clear evidence of the detection of chloride and sulphide in
Figure 5 \(I_{\text{rms}} \) values in México City: (a) during a week in the first month of exposure; (b) during a week in the second month of exposure

Figure 6 \(L_i \) values in México City during a week in the second month of exposure
Figure 7 Li values in Coatzacoalcos during a week of exposure

atmosphere, even when the exposure conditions were not as desirable in Coatzacoalcos site due to the winds.

Wire-on-bolt test
After examining all the results, Table II, it can be seen that there is negligible effect at the México City and Villahermosa sites. It is interesting to note that copper causes more galvanic corrosion than mild steel in México City. For Villahermosa site, it can be seen that mild steel causes more galvanic corrosion of aluminium. CLIMAT units consisting of aluminium wires on steel rods are a sensitive tool for measuring marine influences.

Conclusions
- EN is a powerful tool in the assessing of aggressiveness of atmospheres in short time exposure.
- EMAC seems to be not just a time-of-wetness sensor, but an atmospheres’ aggressiveness sensor.
- Sensitivity of EMAC is quite superior to wire-on-bolt technique as expected, since made evident the presence of contaminants even at very low concentration.
- EN analysis can be carried out even in non-ideal conditions with reliable results.

References

Corresponding author

J. Genesca can be contacted at: genesca@servidor.unam.mx