Cuarta serie de estructura de la materia

1- Determina todos los subniveles que existen en el nivel de número cuántico principal, \(n=4 \), y exprésalos en la forma de función de onda: \(\Psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r)\Theta_{l,m}(\theta)\Phi_m(\phi) \).

2- Demuestra que la función de distribución radial, \(f_{1s}(r) = r^2 R_{1s}(r) \) del átomo de hidrógeno tiene sólo un máximo, con significado físico, a una distancia del núcleo igual a 1 radio de Bohr, \(a_0 \). El valor de la función \(R_{1s}(r) \) es:

\[
R_{1s}(r) = 2 \left(\frac{1}{a_0} \right) ^{3/2} e^{-r/a_0}
\]

3- ¿Cuáles de las siguientes cuartetas de números cuánticos representan soluciones permisibles a la ecuación de onda de Schrödinger para el átomo de hidrógeno.

<table>
<thead>
<tr>
<th></th>
<th>(n)</th>
<th>(l)</th>
<th>(m)</th>
<th>(\ell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-(\frac{1}{2})</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>3</td>
<td>-4</td>
<td>(-\frac{1}{2})</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>2</td>
<td>-2</td>
<td>(-\frac{3}{2})</td>
</tr>
</tbody>
</table>

4- Escribe las funciones de onda \(\Psi_{n,l,m,\ell} \) para todos y cada uno de los electrones del átomo de flúor y cloro.

5- Grafica las funciones de distribución radial 4s, 4p, 4d y 4f, \(f_{4,\ell}(r) = r^2 R_{4,\ell}(r) \), a partir de las siguientes expresiones de la parte radial de sus funciones de onda (Grafica entre 0 y 40 radios de Bohr, para lo cual sustituye el valor de \(x \) como \(r / 2 \). Los valores de \(r \) están dados en radios de Bohr):

\[
R_{4s} = \frac{1}{96} (24 - 36x + 12x^2 - x^3) e^{-x/2}
\]

\[
R_{4p} = \frac{1}{32\sqrt{15}} (20 - 10x + x^2) xe^{-x/2}
\]

\[
R_{4d} = \frac{1}{96\sqrt{5}} (6 - x)x^2 e^{-x/2}
\]

Con base en estas gráficas comenta sobre la probabilidad de encontrar al electrón cerca del núcleo y lejos del núcleo para cada uno de las funciones orbitales 4s, 4p, 4d y 4f.

6- Grafica en coordenadas polares, sobre el plano xy, las siguientes tres funciones, en el mismo diagrama (se trata de una aproximación de las llamadas funciones híbridas sp^x):

\[
\Psi_1(\theta,\phi) = 1 + \sqrt{6} \, \text{sen}\theta \text{sen}\phi
\]

\[
\Psi_2(\theta,\phi) = 1 + \sqrt{9/2} \, \text{sen}\theta \cos\phi - \sqrt{3/2} \, \text{sen}\theta \text{sen}\phi
\]
Resuelve las siguientes preguntas de opción múltiple:

1. Indique cuál aseveración es incorrecta respecto a la mecánica cuántica de Schrödinger:
 a) el operador de energía cinética para una partícula que se mueve en una dimensión contiene una segunda derivada respecto a la posición
 b) el hamiltoniano es el operador de la energía total
 c) al resolver la ecuación de Schrödinger aparecen tanto funciones de onda como sus energías correspondientes
 d) la función de onda no tiene un significado físico directo
 e) el cuadrado de la función de onda indica las posiciones y velocidades posibles para la partícula

2. ¿Qué consecuencia tiene imponer condiciones a la frontera al resolver la ecuación de Schrödinger para el átomo de hidrógeno?
 a) Se cumple todo lo siguiente
 b) Aparecen tres números cuánticos
 c) Se explican las líneas de emisión del hidrógeno
 d) Aparecen niveles de energía degenerados
 e) Se restringe la energía a valores discretos

3. Dadas las siguientes cuartetas de números cuánticos del hidrógeno,

<table>
<thead>
<tr>
<th>n</th>
<th>l</th>
<th>m</th>
<th>m_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>2</td>
<td>-2</td>
</tr>
</tbody>
</table>

 Indica cuál(es) es(son) la(s) cuarteta(s) incorrecta(s):
 a) Solamente C
 b) D y E
 c) B, C y E
 d) A, B, C y E
 e) Todas ellas

4. Para el átomo de hidrógeno, la energía de un orbital atómico depende de:
 a) La forma del orbital en el espacio
 b) La parte angular de la función de onda
 c) El número cuántico n del orbital
 d) La función de distribución radial
 e) La carga nuclear efectiva del electrón que ocupa ese orbital

5. Para el estado basal del átomo de hidrógeno, la función \(f_{1s}(r) = r^2R_{1s}(r) \) representa:
 a) La probabilidad de que el electrón se encuentre en una capa esférica de radio \(r \) y espesor \(dr \) por unidad de intervalo de distancia al núcleo
 b) La probabilidad del electrón dentro de una esfera de radio \(r \)
 c) La probabilidad de que el electrón se encuentre a una distancia \(r \) del núcleo, independientemente de los ángulos
 d) La densidad de probabilidad para la posición del electrón en cada punto del espacio
 e) La probabilidad electrónica en una esfera de radio \(r \) por unidad de intervalo de distancia al núcleo

6. Las funciones de onda del átomo de hidrógeno solamente cumplen con una aseveración, ¿cuál?
 a) Las funciones radiales tienen \(n-\ell \) nodos
 b) La parte angular de la función \(s \) es una constante
 c) Las partes radiales de las funciones \(p \) o \(d \) no valen cero sobre el núcleo
d) El cuadrado de la parte radial de las funciones de onda mide la probabilidad de que el electrón se encuentre dentro de una esfera de radio \(r \).

e) Las unidades del cuadrado de la función de onda son de probabilidad por unidad de distancia al núcleo.

7. El número de orbitales del hidrógeno que tienen \(n=6 \) y \(l=5 \) es:
 a) 5
 b) 6
 c) 11
 d) 12
 e) 30

8. Indique en cuál orbital hay un error en el número de nodos radiales.
 a) 4f ... 1
 b) 1s ... 0
 c) 2s ... 1
 d) 3p ... 1
 e) 3d ... 0

9. Escoge la terna de orbitales del hidrógeno que esté en orden creciente de deslocalización:
 a) Ninguna de las siguientes está ordenada crecientemente
 b) 3s, 2s, 1s
 c) 3d, 3p, 3s
 d) 1s, 2p, 2s
 e) 2p, 5d, 4f

10. Escoge la cuarteta de orbitales del hidrógeno que esté en orden creciente de penetración:
 a) Ninguna de las siguientes está ordenada
 b) 1s, 2s, 3s, 4s
 c) 4f, 4d, 4p, 4s
 d) 3s, 5p, 3d, 2s
 e) 4s, 4p, 4d, 4f