¿MÉTODO?

¿Cuál método?

Arrancar secretos a la naturaleza no es simplemente seguir una serie de pasos.

Sergio de Régules

No es lo mismo ser buen cocinero que un artista de la cocina. El cocinero puede preparar ricos platillos siguiendo maquinamente una receta. El artista sabe combinar ingredientes de maneras insólitas, tiene la intuición del sabor y la textura, y puede inventar platillos nuevos. El procedimiento del cocinero se puede reducir a un método que consiste en apearse a la receta; el del artista no, porque consiste en poner a prueba ideas novedosas.

En el siglo XVII el político y filósofo inglés Francis Bacon quiso formular un método para arrancarle conocimientos a la naturaleza, es decir, para hacer ciencia. A Bacon le hacía ilusión transformar la indagación científica en una serie de pasos que bastara seguir al pie de la letra para obtener resultados. Bacon llamó a su método "la nueva herramienta" y lo comparó con el compás, que permite trazar círculos perfectos sin necesidad de ser buen dibujante. "Nuestro método de invención en las ciencias", escribió Bacon, "hace a todos los espíritus casi iguales y deja muy pocas ventajas a la superioridad del ingenio". Traducción: sigue la receta y serás buen científico.

Algunas de las ideas de Francis Bacon acerca de la manera científica de pensar siguen siendo fundamentales. Bacon advirtió a todos los que pretendieran estudiar la naturaleza por medio de la ciencia que tuvieran cuidado con los vicios del razonamiento que él llamaba "idolos de la mente". Los humanos tenemos una facilidad asombrosa para engañarnos a nosotros mismos. Tendemos a creernos lo
que es más fácil declarar de lo que no. Nos ciegan nuestras ideas preconcebidas (las que hemos absorbido desde niños sin poner a prueba). Hasta el estado de ánimo nos enturbia el entendimiento. Pero a la naturaleza le importan un cacahuate nuestros gustos, nuestros prejuicios y nuestro humor, de modo que mal haremos en dejarnos guiar por ellos al hacer ciencia. Para no caer en las trampas de los ídolos de la mente, Francis Bacon recomendaba avanzar con píes de plomo en el estudio de la naturaleza.

Buena consejo, pero aunque Bacon es una figura importante en la filosofía de la ciencia por ésta y otras recomendaciones, su método tal cual él lo expuso nunca acabó de cuajar por ser demasiado simple. Robert Boyle, uno de los fundadores de la química moderna, trató de aplicar a sus investigaciones los preceptos de Bacon y descubrió que, lejos de ayudarle, lo freían. El método de Francis Bacon era más lastre que impulso.

Lo que si cuajó fue la idea de que la investigación científica se podía reducir a una serie de instrucciones. Yo recuerdo que en la secundaria me enseñaron una cosa que se llamaba "el método científico". No era el de Bacon, sino una enseñanza que se elaboró después. El tal método científico era una especie de receta de cocina que, se suponía, usaban los científicos para extraer conocimientos de la naturaleza. Según este método, los resultados científicos siempre se obtienen así: primero se observa objetivamente un fenómeno, luego se hace una hipótesis para explicarlo y finalmente se realizan experimentos para comprobar o refutar la hipótesis.

Si las cosas fueran así la vida de los científicos se simplificaría muchísimo (aunque posiblemente también se volvería aburrida). Por desgracia (o quizás por suerte), las cosas no son así. En la historia de la ciencia abundan los casos que no se ajustan a este sencillo algoritmo. Puede suceder, por ejemplo, que la teoría preceda a la observación del fenómeno, o que las observaciones que se pretenden objetivas conduzcan a errores graves de interpretación.

Albert Einstein propuso en 1905 la teoría especial de la relatividad para explicar ciertos resultados experimentales que no cabían en la física de su época. Hasta aquí se puede decir que el desarrollo de la teoría de la relatividad se ajusta a lo que prescribe el método que se enseñaron en la secundaria: primero la observación del fenómeno, después la teoría. Pero luego, sin otro motivo que un deseo de generalidad —sin que hubiera observaciones previas que lo exigieran—, Einstein extendió la teoría especial de la relatividad y obtuvo una nueva teoría de la atracción gravitacional. La nueva teoría decía, entre otras cosas, que la luz debía desviarse en un campo gravitacional, fenómeno que nunca se había observado. En 1919, tres años después de la publicación de la teoría general de la relatividad, un grupo de científicos británicos confirmó esta predicción.

A principios del siglo XVII Galileo Galilei observó los planetas con un telescopio que él mismo fabricó y concluyó que el planeta Saturno, que se veía como una mancha alargada en su telescopio, estaba formado por tres cuerpos: el planeta y dos lunas, una a cada lado, como si fueran orejas. Galileo pudo haber alegado que sus observaciones eran de lo más objetivas: las había hecho con sus propios ojos. Con todo, llegó a una conclusión errónea. Cuarenta o 50 años más tarde, Christiana Huygens descubrió que lo que a Galileo le había parecido dos lunas eran unos anillos. Galileo se dejó engañar por: 1) la imperfección de su telescopio y 2) sus ideas preconcebidas, que no daban cabida a que un planeta pudiera tener anillos.

La ciencia avanza por caminos torcidos y llenos de bifurcaciones y callejones sin salida. Para orientarse el científico requiere intuición, creatividad, sentido estético y hasta suerte. Una lista de instrucciones fijas no puede serle de utilidad. Y además, ¿para qué pretender reducir la ciencia a una receta de cocina? La idea de método —o por lo menos la idea de un solo método— empobrecería nuestro concepto de investigación científica. ¿No es mejor dejar de lado el deseo de simplificar la ciencia y disfrutarla en toda su magnificidad complejidad, como un plato preparado por un gran chef?