PROBLEMS

5-1 Multistep reactions; limiting forms; equivalent mechanisms. Consider scheme I for the net reaction $2\text{Fe}^{2+} + \text{Tl}^{3+} = 2\text{Fe}^{3+} + \text{Tl}^{2+}$:

Scheme I:

\[\text{Tl}^{3+} + \text{Fe}^{2+} \xrightleftharpoons[1]{-1} \text{Tl}^{2+} + \text{Fe}^{3+} \]

\[\text{Tl}^{2+} + \text{Fe}^{2+} \xrightarrow[-2]{2} \text{Tl}^{+} + \text{Fe}^{3+} \]

(a) Derive the rate expression making the steady-state approximation for $[\text{Tl}^{2+}]$.
(b) To what simpler forms does this reduce under what limiting conditions?
(c) Are, and under what conditions, schemes II and III distinguishable from I?

Scheme II:

\[\text{Tl}^{3+} + \text{Fe}^{2+} \xrightarrow[3]{-3} \text{Ti}^{4+} + \text{Fe}^{4+} \]

\[\text{Fe}^{4+} + \text{Fe}^{2+} \xrightarrow[4]{-4} 2\text{Fe}^{3+} \]

Scheme III:

\[2\text{Fe}^{2+} \xrightarrow{K_5} \text{Fe}^{3+} + \text{Fe}^{3+} \]

\[\text{Fe}^{3+} + \text{Tl}^{3+} \xrightarrow[6]{-6} \text{Fe}^{2+} + \text{Tl}^{2+} \]

\[\text{Fe}^{3+} + \text{Tl}^{2+} \xrightarrow[7]{-7} \text{Fe}^{4+} + \text{Tl}^{+} \]

\[\text{Fe}^{4+} + \text{Fe}^{2+} = 2\text{Fe}^{3+} \quad \text{(very fast)} \]
5-2 Rate law and mechanism. Cetini et al. [Inorg. Chem., 10:2672 (1971)] propose this mechanism:

\[
\begin{align*}
[Ni(cp)_2(CO)_2] &\xrightarrow{1} [Ni(cp)_2(CO)_2]^* \\
[Ni(cp)_2(CO)_2]^* + PhCCPh &\xrightarrow{2} [Ni(cp)_2(PhCCPh)] + 2CO \\
\text{Net: } [Ni(cp)_2(CO)_2]^* + PhCCPh &= [Ni(cp)_2(PhCCPh)] + 2CO
\end{align*}
\]

in which \([Ni(cp)_2(CO)_2]^*\) represents a steady-state intermediate of rearranged structure.

(a) Derive the differential rate expression. Designate the pseudo-first-order rate constant \(k_{obs}\). Prove that 1/\(k_{obs}\) versus 1/[PhCCPh] should be linear (i.e., \(1/k_{obs} = \text{slope} + \text{intercept}/[\text{PhCCPh}]\)).

(b) Assuming each of the three individual rate constants follows the Arrhenius equation,
\[k_i = A_i \exp\left(-\frac{E_i}{RT}\right),\]
identify the exact quantity given by the slope of the following plots:

1. In (1/intercept) versus 1/T
2. In (slope/intercept) versus 1/T

5-3 Rate law and mechanism. Write a mechanism consistent with the following observations, and give the algebraic relation between the constants of your mechanism and those in the experimental rate law. Mawby and coworkers [J. Chem. Soc. Dalton, 220 (1973)] report that the isomerization of A to B

\[
\text{CO} \quad \text{Cl} \quad \text{L} \quad \text{Cl} \quad \text{A} = \text{CO} \quad \text{Cl} \quad \text{L} \quad \text{Cl} \quad \text{B}
\]

follows the rate expression (L is a phosphine, PMe_2Ph).

\[
\frac{d[B]}{dt} = \frac{P[A]}{1 + \theta[L]}
\]

5-4 Rate law and mechanism. The redistribution of alkyl groups on silanes as in the equation

\[2\text{Me}_3\text{SiEt} = \text{Me}_2\text{SiEt}_2 + \text{Me}_4\text{Si}\]

is catalyzed in benzene solution by aluminum bromide according to the rate expression

\[
\frac{-d[\text{Me}_3\text{SiEt}]}{dt} = \frac{\alpha[\text{Me}_3\text{SiEt}]^2[\text{Al}_2\text{Br}_6]}{1 + \beta[\text{Me}_3\text{SiEt}]}
\]

Propose a mechanism to account for this result and show how the rate constants for the elementary reactions are related to \(\alpha\) and \(\beta\).

5-5 Rate law and mechanism. The net reaction

\[2\text{V(III)} + 2\text{Hg(II)} = 2\text{V(IV)} + [\text{Hg(II)}]_2\]

has a rate term showing the following concentration dependences

\[
\frac{-d[\text{V(III)}]}{dt} = \frac{A[V(III)]^2[Hg(II)]}{B[V(IV)] + [V(III)]}
\]

Suggest a mechanism consistent with this rate expression noting that on the time scale of this reaction the following are fast and lie far to the right

\[\text{V(III)} + \text{V(V)} \rightarrow 2\text{V(IV)} \quad \text{Hg(II)} + \text{Hg}^0 \rightarrow [\text{Hg(II)}]_2\]

5-6 Rate law and mechanism. P. C. Elgen [Inorg. Chem., 11:691 (1972)] has studied the reaction of dicobalt octacarbonyl with alkynes:

\[\text{Co}_2(\text{CO})_8 + \text{R}_2\text{R'} = \text{Co}_2(\text{CO})_6\text{R}_2\text{R'} + 2\text{CO}\]
under conditions in which [RC₂R'] and [CO] were in large excess over [CO₂(CO)₈]. The symbol

\(k_{\text{obs}} \) represents the pseudo-first-order rate constant defined by the relation

\(-d \ln [\text{CO}_2(\text{CO})_8]/dt\).

Consider the following two mechanisms:

Mechanism I:

\[\text{CO}_2(\text{CO})_8 \xrightleftharpoons[k_{-3}^{'}]{k_1^{'}} \text{CO}_2(\text{CO})_7 + \text{CO} \]

\[\text{CO}_2(\text{CO})_7 + \text{Ph}_2\text{C}_2 \xrightarrow{k_1} \text{CO}_2(\text{CO})_8\text{Ph}_2\text{C}_2 + \text{CO} \]

Mechanism II:

\[\text{CO}_2(\text{CO})_8 + \text{Ph}_2\text{C}_2 \xrightarrow[k_{-3}^{'}]{k_2^{'}} \text{CO}_2(\text{CO})_7\text{Ph}_2\text{C}_2 + \text{CO} \]

\[\text{CO}_2(\text{CO})_7\text{Ph}_2\text{C}_2 \xrightarrow{k_2} \text{CO}_2(\text{CO})_8\text{Ph}_2\text{C}_2 + \text{CO} \]

(a) For each mechanism derive an expression for \(k_{\text{obs}} \). Make the steady-state assumption for the intermediate.

(b) What (be specific) do the following observations reveal about the correctness of either mechanism? \(k_{\text{obs}} \) is a linear function of \(1/[\text{C}_2\text{Ph}_2]^0 \) at constant [CO], and the slope of the plot varies directly with [CO]. Provide numerical values for any rate constants or rate constant combination you can on the basis of these data.

5.7 Reaction mechanism. The reaction of dichromate ion with dihydrogen, \(\text{Cr}_2\text{O}_7^{2-} + 3\text{H}_2 + 8\text{H}^+ = 2\text{Cr}^{3+} + 7\text{H}_2\text{O} \), is very slow, but it is catalyzed by salts of \(\text{Cu}^{2+} \) and \(\text{Ag}^{+} \) according to the following rate laws [J. Halpern et al., J. Phys. Chem., 60:1455 (1956); 61:1239 (1957)]:

\[\frac{-d[\text{Cr}_2\text{O}_7^{2-}]}{dt} = k_{\text{Cu}}[\text{Cu}^{2+}]^2[\text{H}_2] \]

\[\frac{-d[\text{Cr}_2\text{O}_7^{2-}]}{dt} = k_{1\text{Ag}}[\text{Ag}^{+}]^2[\text{H}_2] + k_{2\text{Ag}}[\text{Ag}^{+}][\text{H}_2] \]

Interpret (separately) these observations in terms of reaction mechanisms.
5-10 Pre-equilibria and reaction mechanism. Woodruff, Weatherburn, and Margerum [Inorg. Chem., 10:2102 (1971)] have studied the oxidation of certain Fe(II) complexes (Fe(II)L) by iodine-triiodide solutions.

\[
2\text{Fe}(\text{II})\text{L} + \text{I}_3^- \rightarrow 2\text{Fe}(\text{II})\text{L} + 3\text{I}^-
\]

The rate is first-order in \([\text{Fe}(\text{II})\text{L}]\) and first-order in total iodine concentration \([\text{I}_2]_T\) (where \([\text{I}_2]_T = [\text{I}_2] + [\text{I}_3^-]\)):

\[
\frac{-d[\text{I}_2]_T}{dt} = k_0[\text{Fe}(\text{II})\text{L}][\text{I}_2]_T
\]

A correction was applied for the equilibrium

\[
\text{I}_2 + \text{I}^- \rightarrow \text{I}_3^- \quad (K_{12} = 770 \text{ M}^{-1} \text{ at } 25^\circ)
\]

Prove that the data shown are consistent with parallel rate-limiting reactions of \(\text{I}_2\) and \(\text{I}_3^-\) and evaluate \(k_1\) and \(k_2\) at 25.0\(^\circ\).

\[
\begin{align*}
\text{Fe}(\text{II})\text{L} & \rightarrow k_1 \text{Fe}(\text{III})\text{L} + \text{I}^- \\
\text{Fe}(\text{II})\text{L} + \text{I}_3^- & \rightarrow \text{Fe}(\text{III})\text{L} + \text{I}_2 \\
\end{align*}
\]

\[
K_{12} = \frac{[\text{Fe}(\text{III})\text{L}][\text{I}^-]}{[\text{Fe}(\text{II})\text{L}]},
\]

\[
K_{12} = \frac{[\text{Fe}(\text{III})\text{L}][\text{I}_3^-]}{[\text{Fe}(\text{II})\text{L}][\text{I}_2]}
\]