Práctica 6: Propiedades Físicas y Enlace Químico en Sólidos

PREGUNTA A RESPONDER AL FINAL DE LA PRÁCTICA

¿Qué tipo de enlace predomina en cada uno de los compuestos con los que trabajaste? ¿En qué propiedades te basaste para asignar el tipo de enlace?

Introducción

Las propiedades físicas de sólidos dependen de los enlaces químicos que mantienen unidas a las entidades que los forman. La cantidad, intensidad y naturaleza de estas interacciones confieren propiedades particulares a las sustancias por lo que es posible correlacionar las propiedades de los sólidos con los diferentes tipos de enlace: iónico, covalente y metálico. En esta práctica emplearemos sustancias que pueden servirnos para generalizar las características de estos tipos de enlace aunque hay que tener en mente que siempre hay excepciones.

Tarea Previa

Lee el documento titulado “Enlace Químico” que se encuentra en la liga del amyd y responde el cuestionario correspondiente, este se entregará el día de entrega del informe.

1. ¿Qué es un enlace químico?

2. ¿Cómo se define enlace iónico?

3. ¿Cómo son las propiedades físicas de los compuestos con este tipo de enlace?

4. ¿Cómo se define enlace covalente?

5. ¿Cómo son las propiedades físicas de los compuestos con este tipo de enlace?

6. ¿Cuál es la diferencia entre un compuesto covalente molecular y uno que forma parte de una red covalente?
7. ¿Cómo se define enlace metálico?

8. ¿Cómo son las propiedades físicas de los compuestos con este tipo de enlace?

9. Investiga los diferentes tipos de atracciones intermoleculares que mantienen unidas a las moléculas de los sólidos moleculares covalentes y da ejemplos de éstas.

10. De las siguientes mezclas, de acuerdo al tipo de enlace de los componentes, ¿qué fuerzas intermoleculares predominarían y cuales formarían una disolución homogénea?

a) NaCl (cloruro de sodio) y H$_2$O (agua):

b) CH$_3$CH$_2$OH (etanol) y H$_2$O (agua):

c) CH$_3$(CH$_2$)$_4$CH$_3$ (hexano) y CH$_3$(CH$_2$)$_6$CH$_3$ (octano):

d) C$_6$H$_6$ (benceno) y H$_2$O (agua):

Material y reactivos

Muestras problema: KNO$_3$ sólido, Ácido Esteárico sólido, SiO$_2$ sólido, Sn
Disolventes: Agua destilada, n-hexano
Conductímetro, Varilla de agitación de vidrio, tubos de ensaye

Medidas de seguridad

1. Usa lentes de seguridad durante toda la práctica.
2. El ácido esteárico es inocuo, sin embargo, como todas las sustancias, ten cuidado al manipularlo.
3. El n-hexano es altamente flammable y es tóxico por ingestión, inhalación y se absorbe a través de la piel. No debe emplearse cuando se tiene cerca un mechero encendido u otro tipo de flama.
4. Los dispositivos para medir conductividad eléctrica son fuentes potenciales de toques eléctricos intensos, por lo que deben manipularse con cuidado.
5. Las sustancias volátiles deben ser usadas en una campana.
Problema 1
¿Cómo son los puntos de fusión, la volatilidad y la solubilidad de sustancias cuya estructura se mantiene por diferentes tipos de enlace?

Procedimiento experimental 1
Anota tus observaciones después de realizar cada paso en la tabla 1.

1. Coloca muestras de aproximadamente 0.5 g de nitrato de potasio, ácido esteárico, dióxido de silicio (o en su defecto arena), y estano en vasos de precipitados o vidrios de reloj. Prueba la dureza de cada sólido presionándolo contra el fondo con la ayuda de una varilla de agitación.

2. Anota si las sustancias tienen aspecto cristalino o no. Un sólido cristalino tiene formas geométricas regulares, definidas y planas, por lo que reflejan la luz incidente (brillan).

4. Huele cuidadosamente cada sustancia acercando los vapores de la sustancia hacia tu nariz con la ayuda de tu mano. No los huelas directamente.

5. Divide cada sólido en 3 porciones pequeñas en tu bols de ensayez previamente etiquetados con el nombre de la sustancia. Para la primera serie de tubos prueba el punto de fusión de cada una de ellas en un baño María. Las sustancias que no se fundan así, colócalas en una cucharilla de combustión y caliéntalas directamente a la flama por un tiempo máximo de 5 minutos. Quita el sólido de la flama tan pronto como se funda. Nota: La temperatura que alcanza el mechero es de 800 °C, aproximadamente.

6. Para la segunda serie de tubos agrega 2.5 mL de agua destilada y para la tercera serie 2.5 mL de n-hexano. Ponles un tapón y agitalos. Observa cuidadosamente si se disuelve el sólido. Conserva los tubos para el siguiente procedimiento.

Problema 2
¿Cómo es la conductividad de sólidos y disoluciones de sustancias cuya estructura se mantiene por diferentes tipos de enlace?

Procedimiento experimental 2
1. Prueba la conductividad de cada una de tus muestras colocando separadamente una porción pequeña de éstas en un vidrio de reloj y tocando el sólido con los alambres de un equipo de conductividad simple de bajo voltaje. (Pide a tu profesor indicaciones de cómo utilizar el equipo de conductividad).

2. Prueba la conductividad de los disolventes a emplear (agua destilada y n-hexano) en un tubo de ensayez por separado. Enjuaga y seca los electrodos del equipo de conductividad con el disolvente antes y después de cada prueba.

3. Prueba la conductividad de las disoluciones o mezclas disolvente/sólido de las cuatro sustancias empleadas tanto en agua destilada como en n-hexano.

4. Desecha los materiales de acuerdo a las indicaciones de este procedimiento y de tu profesor. Lava cuidadosamente tus manos y tu material de laboratorio antes de salir.

NOTA: Ten cuidado con las sustancias que no resultan solubles, pues el fenómeno de la conductividad eléctrica SÓLO se presenta cuando existen iones DISUELTSOS en el disolvente. Para decir que una sustancia NO conduce, es necesario asegurar que está disuelta y sólo así, su prueba de conductividad será negativa.
Aplicación en muestras desconocidas

El profesor te proporcionará tres muestras de sólidos desconocidos, trata de clasificarlos en alguno de los tipos de enlace repitiendo las pruebas sugeridas en esta práctica.

Resultados

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>KNO₃</th>
<th>Ácido esteárico</th>
<th>SiO₂</th>
<th>Sn</th>
<th>Sólido 1</th>
<th>Sólido 2</th>
<th>Sólido 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dureza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspecto cristalino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatilidad ¿huele?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punto de Fusión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajo T<90 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto 90<T<400 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solubilidad en agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solubilidad en n-hexano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductividad sólido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductividad en agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductividad en n-hexano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Escala propuesta:

<table>
<thead>
<tr>
<th>¿Conduce la electricidad?</th>
<th>Agua</th>
<th>n-hexano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tratamiento de Residuos

Todos los tubos que contengan sólidos sin disolver en agua se deberán filtrar de manera separada con los que contengan n-hexano. Los filtrados de disoluciones acuosas se tiran a la tarja, mientras que las disoluciones de n-hexano se recuperan en un contenedor para enviarse a tratamiento. Los sólidos retenidos en el papel filtro se pueden tirar al bote de basura.
Cuestionario

1. ¿Es posible obtener alguna información de las fuerzas relativas de los enlaces iónicos y covalentes mediante la comparación de los puntos de fusión? Explica.

2. Ordena de mayor a menor la dureza que esperas que tenga un sólido formado por cada uno de los cuatro tipos de enlace (iónico, covalente molecular, red covalente y red metálica)

3. Ordena los sólidos que tienes de acuerdo a la dureza que observaste. ¿Qué tipo de enlace asignarías a cada sólido?

4. Asigna a cada sólido un tipo de enlace con base en tus resultados de volatilidad y punto de fusión. ¿Coincide este orden con el obtenido al analizar su dureza? Explica.
KNO₃

Ácido esteárico

SiO₂

Sn

4. Desde los inicios de la química, se dice que “semejante disuelve a lo semejante”. Considerando que el agua es un disolvente polar y el n-hexano es un disolvente no polar, clasifica las interacciones que mantienen unidos a cada uno de los sólidos que empleaste como polares o no polares, de acuerdo a su solubilidad en estos disolventes.

5. Los sólidos iónicos tienen aniones y cationes localizados en sitios regulares formando redes cristalinas. ¿Qué tipo de disolvente (polar o no polar) crees que sea capaz de romper las interacciones que mantienen sus estructuras? ¿Coincide con lo observado experimentalmente?

6. ¿Se requiere más energía para perturbar un cristal de un sólido molecular o de un sólido iónico? ¿Por qué?

7. ¿Cómo puedes saber si un sólido cristalino está formado por moléculas o por iones? Explica.

8. Los sólidos de redes covalentes contienen solamente enlaces covalentes primarios. Este tipo de enlaces en una, dos o tres dimensiones da estructuras muy estables. ¿Cómo es el punto de fusión de estos sólidos?

9. Los enlaces metálicos se dan por las interacciones entre los electrones de valencia y los “kernels” positivos de los átomos metálicos. Esto da como resultado un enlace no-direccional y un conjunto de electrones que no están asociados fuertemente con ningún kernel atómico en particular. ¿Qué características físicas dan estos electrones a los metales?

10. Con base en el desarrollo de la práctica justifica la clasificación de los sólidos desconocidos como sólido formados por enlaces iónicos, covalente molecular, red covalente o metálico.

Sólido 1

Sólido 2

Sólido 3

Conclusiones
¿Qué tipo de enlace predomina en cada uno de los compuestos con los que trabajaste? ¿En qué propiedades te basaste para asignar el tipo de enlace?
¿Cómo son los puntos de fusión y la solubilidad de sustancias cuya estructura se mantiene por diferentes tipos de enlace? ¿Cómo es la conductividad de sólidos y disoluciones de sustancias cuya estructura se mantiene por diferentes tipos de enlace?