Titulaciones
Ácido base y
y Karl Fischer

M. en I. Pedro S. Valadez Eslava
VOLUMETRÍA

- Técnica analítica que se basa en la titulación de una sustancia en solución con un titulante de concentración conocida, el punto final se determina de manera instrumental (potenciométrico), o visualmente (indicador), con la finalidad de determinar la concentración o cantidad de una sustancia en la muestra.
FORMAS DE EXPRESAR LA CONCENTRACIÓN

<table>
<thead>
<tr>
<th>FORMA</th>
<th>ABREV</th>
<th>EJEMPLO</th>
<th>SE ESCRIBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>POR CIENTO PESO EN PESO</td>
<td>(% P/P)</td>
<td>ÁCIDO CLORHÍDRICO AL 36 %</td>
<td>36 de de HCl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36 % P/P = ---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 g de ácido clorhídrico al conc, 36 g de ácido clorhídrico por cada 100 g de ácido clorhídrico concentrado</td>
</tr>
<tr>
<td>POR CIENTO PESO EN VOLUMEN</td>
<td>(% P/V)</td>
<td>UN SOLUCIÓN DE NAOH AL 0.35 %</td>
<td>0.35g DE NaOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.35 % P/V = ---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 mL DE SOLUCIÓN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.35 g de NaOH en 100 mL de Solución</td>
</tr>
<tr>
<td>POR CIENTO VOLUMEN EN VOLUMEN</td>
<td>(% V/V)</td>
<td>UN ELIXIR PUEDE CONTENER COMO MÁXIMO 18 % DE ALCOHOL</td>
<td>18 mL DE ALCOHOL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 % V/V = ---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 mL DE ELIXIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 mL DE ALCOHOL POR CADA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 mL DE ELIXIR</td>
</tr>
<tr>
<td>PARTES POR MILLÓN</td>
<td>ppm</td>
<td>EL LÍMITE DE ÓXIDO DE ETILENO EN DISPOSITIVOS MÉDICOS ES DE 10 ppm</td>
<td>10 mg 10 µg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 ppm = -------------- ó ------------ Kg g</td>
</tr>
</tbody>
</table>
DEDUCCIÓN

En sólidos

\[
1 \text{ parte} \quad 1 \text{ mg} \quad \frac{1,000,000 \text{ mg}}{1 \text{ mg}} \quad \frac{1 \text{ mg}}{\mu g} \]

\[1 \text{ ppm} = \frac{1}{1,000,000 \text{ partes}} \div \frac{1}{1,000,000 \text{ mg}} \times \frac{1}{1 \text{ Kg}} = \frac{1}{1 \text{ Kg}} \times \frac{1}{g} = \frac{1}{g}
\]

En líquidos

\[
1 \text{ parte} \quad 1 \text{ mg} \quad \frac{1,000,000 \text{ μL}}{1 \text{ mg}} \quad \frac{1 \text{ mg}}{\mu g} \]

\[1 \text{ ppm} = \frac{1}{1,000,000 \text{ partes}} \div \frac{1}{1,000,000 \text{ μL}} \times \frac{1}{1 \text{ L}} = \frac{1}{1 \text{ L}} \times \frac{1}{mL} = \frac{1}{mL}
\]

Muy empleadas para expresar límites de impurezas.
FORMAS DE EXPRESAR LA CONCENTRACIÓN

<table>
<thead>
<tr>
<th>PROPORCIONES</th>
<th>X : Y</th>
<th>FASE MÓVIL PARA CROMATOGRAFÍA DE LÍQUIDOS</th>
<th>H$_2$O : ACETONITRILLO: BUFFER DE FOSFATOS 0.5 M (30:40:30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FASE MÓVIL PARA CROMATOGRAFÍA DE LÍQUIDOS</td>
<td>* NO ES NECESARIO QUE LAS PROPORCIONES SUMEN 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A:B:C (30:70:20) = 120 ⇒</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25% DE A (30*100/120)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>58.33 DE B Y 16.66 DE C</td>
</tr>
</tbody>
</table>

| TÍTULO | 1 mL de NaOH 0.5 N ES EQUIVALENTE A 45.04 mg DE ÁCIDO ACETIL SALÍCILICO |

<table>
<thead>
<tr>
<th>MOLARIDAD</th>
<th>NORMALIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol</td>
<td>Eq</td>
</tr>
<tr>
<td>mmol</td>
<td>mEq</td>
</tr>
</tbody>
</table>

MOLARIDAD (M) = --------- = ---------
 L mL

PESO MOLECULAR (PM) = -------- = -------
 mol mmol

PM ---- 1 mol

g ---- X ⇒ MOLES = g / PM (g/mol) = mol

NORMALIDAD (N) = --------- = ---------
 L mL

PESO EQUIVALENTE (PEq) = -------- = ------- = ------
 Eq mEq # eq

PEq ---- 1 eq

g ---- X ⇒ EQUIVALENTES = g / PEq (g/Eq) = Eq
ESCALA DE ACIDEZ Y BASICIDAD

\[\text{H}^+ \]

0 \hspace{5cm} 7 \hspace{5cm} 14 \hspace{5cm} \text{OH}^-
VALORACIÓN O ENSAYO

• En éste caso una solución titulante de concentración conocida reacciona con la sustancia de interés contenida en la muestra.

• Todo método analítico requiere de un estándar.
EJERCICIO

• Calcular el número de mmoles que hay en:

0.04 mL de NaOH 0.005 M. PM$_{\text{NaOH}}$ = 40 g/mol
EJERCICIO
VOLUMETRÍA

- Clasificación según el medio de reacción:

 - Titulaciones
 - Medio Acuoso
 - Medio no acuoso
VOLUMETRÍA

- Según el tipo de titulación:
 - Titulaciones
 - Directas
 - Indirectas
 - Por producto
 - Por exceso o en retroceso
PUNTO DE EQUIVALENCIA – PUNTO FINAL

• Punto de equivalencia: Cuando se ha adicionado un volumen de titulante con el cual la reacción química está terminada. (Se ha consumido completamente la muestra).

• Punto final: Volumen indicado por algún método, nos avisa que la reacción ha terminado.
MÉTODOS PARA DETERMINAR EL PUNTO DE EQUIVALENCIA

- 1. Método potenciométrico

- 2. Por medio de indicadores
• *Indicador*: sustancia o técnica que visualiza o detecta el punto de equivalencia
BLANCO: TODO MENOS MUESTRA MISMO TRATAMIENTO

- Blanco: Titulación de una muestra que contiene las mismas sustancias en las mismas cantidad y con el mismo tratamiento con excepción del analito de interés.

- Para incrementar la confiabilidad de la determinación del punto final, se realiza una corrección con un blanco.
FÓRMULA DE VOLUMETRÍA

\[Volumen \ (mL) \times \text{Normalidad} \left(\frac{mEq}{mL} \right) = \frac{Peso \ (mg)}{PEq \left(\frac{mg}{mEq} \right)} \]
EJERCICIO

• Para normalizar una solución de NaOH, se siguió la siguiente técnica: Pesar aproximadamente con exactitud 0.500 g de Biftalato de potasio, transferir a un matraz erlenmeyer de 125 mL, adicionar 50 mL de agua y 2 gotas de fenolftaleína y titular con solución de NaOH. Realizar por triplicado y preparar un blanco para la corrección correspondiente.
BLANCO

- Diagrama de líneas

MUESTRA

- BITFALATO DE POTASIO + 50 mL Agua + 2 gotas Indicador
- HIDRÓXIDO DE SODIO 0.1 N

BLANCO

- 50 mL Agua + 2 gotas Indicador
- HIDRÓXIDO DE SODIO 0.1 N
EJERCICIO

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Peso de biftalato de potasio (mg)</th>
<th>Volumen de NaOH (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>494.9</td>
<td>25.52</td>
</tr>
<tr>
<td>2</td>
<td>503.2</td>
<td>25.71</td>
</tr>
<tr>
<td>3</td>
<td>501.7</td>
<td>25.63</td>
</tr>
<tr>
<td>BLANCO</td>
<td>--------</td>
<td>0.06</td>
</tr>
</tbody>
</table>

• Peso molecular del Biftalato de Potasio: 204.2 mg/mmol
PASO 1

- Calcular el volumen corregido.

Volumen corregido: \((\text{Vol. Muestra} - \text{Vol. del blanco})\) mL

\[
M1 = (25.52 - 0.06) \text{ mL} = 25.46 \text{ mL}
\]
\[
M2 = (25.71 - 0.06) \text{ mL} = 25.65 \text{ mL}
\]
\[
M3 = (25.63 - 0.06) \text{ mL} = 25.57 \text{ mL}
\]
PASO 2

• Determinar la fórmula a emplear.

$$Volumen\ (mL) \times Normalidad\ \left(\frac{mEq}{mL}\right) = \frac{Peso\ (mg)}{PEq\ \left(\frac{mg}{mEq}\right)}$$

• Despejando…

$$Normalidad\ \left(\frac{mEq}{mL}\right) = \frac{Peso\ (mg)}{Volumen\ (mL) \times PEq\ \left(\frac{mg}{mEq}\right)}$$
PASO 3

• Sustituyendo en la ecuación para Muestra 1:

\[
\text{Volumen (mL)} \times \text{Normalidad } \left(\frac{\text{mEq}}{\text{mL}} \right) = \frac{\text{Peso (mg)}}{\text{PEq } \left(\frac{\text{mg}}{\text{mEq}} \right)}
\]

\[
\text{Normalidad } \left(\frac{\text{mEq}}{\text{mL}} \right) = \frac{494.9 \text{ mg Biftalato de potasio}}{25.46 \text{ mL}^* \times 204.2 \text{ } \frac{\text{mg}}{\text{mEq}}}
\]

* Volumen corregido M1 = (25.52 – 0.06) mL = 25.46 mL
PASO 4

- Calcular la normalidad para cada muestra y el promedio.

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>NORMALIDAD (mEq/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra 1</td>
<td>0.0952</td>
</tr>
<tr>
<td>Muestra 2</td>
<td>0.0961</td>
</tr>
<tr>
<td>Muestra 3</td>
<td>0.0961</td>
</tr>
<tr>
<td>Promedio</td>
<td>0.0958</td>
</tr>
<tr>
<td>C.V</td>
<td>0.5 %</td>
</tr>
</tbody>
</table>
EJERCICIO

• Para normalizar una solución de HCl, se siguió la siguiente técnica: Pesar aproximadamente con exactitud 0.200 g de Carbonato de sodio previamente secado, transferir a un matraz erlenmeyer de 125 mL, adicionar 50 mL de agua y 2 gotas de rojo de metilo y titular con solución de HCl. Realizar por triplicado y preparar un blanco para la corrección correspondiente.

• Peso molecular del Carbonato de sodio: 106 mg/mmol
EJERCICIO

- Calcular la normalidad de la solución de HCl.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Peso del carbonato de sodio (g)</th>
<th>Volumen de HCL (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2012</td>
<td>35.45</td>
</tr>
<tr>
<td>2</td>
<td>0.1999</td>
<td>34.33</td>
</tr>
<tr>
<td>3</td>
<td>0.1978</td>
<td>34.22</td>
</tr>
<tr>
<td>BLANCO</td>
<td>-------</td>
<td>0.05</td>
</tr>
</tbody>
</table>
EJERCICIO
1. Calcular el volumen de la bureta más adecuado para realizar la siguiente determinación.

Assay – Dissolve about 300 mg de Miconazole, accurately weighed, in 40 mL of glacial acetic acid, add 4 drops of p-naptholbenzein TS, and titrate with 0.1 N perchloric acid VS to a green endpoint. Perform a blank determination, and make any necessary correction. Each mL of 0.1 N perchloric acid is equivalent to 41.61 mg of C18H14Cl4NO. PM 416.13
EJERCICIO
EJERCICIO

- Calcular el volumen de ácido sulfúrico que hay que medir para preparar 500 mL de solución 0.5 N, Pureza del ácido sulfúrico 96 % p/p y densidad 1.84 g/mL
EJERCICIO
FÓRMULAS

%Epinefrina(BS) = \(\frac{(V_{muestra} - V_{BCO}) mL \cdot N_{HClO_4} (mEq) \cdot 1 \text{mEq Epinefrina}}{(mL) \cdot 1 \text{mEq HCLO}_4} \times \frac{187.5 \text{mg Epinefrina}}{1 \text{mEq Epinefrina}} \times \frac{100}{\text{Peso muestra (mg húmedos) } \frac{(100 - \%PS) \text{mg secos}}{100 \text{ mg muestra húmedos}}} \)

%Epinefrina(BS) = \(\frac{(V_{muestra} - V_{BCO}) mL \cdot HCLO_4}{ml \cdot HCLO_4} \times \frac{18.75 \text{ mg Epinefrina}}{N \text{ real } HCLO_4} \times \frac{N \text{ teórica } HCLO_4}{100} \times \frac{100}{\text{Peso muestra (mg húmedos) } \frac{(100 - \%PS) \text{mg secos}}{100 \text{ mg muestra húmedos}}} \)
¿Cómo prepararía una solución 0.001 M a partir de una solución 0.25 M?

Mediante una dilución empleando la fórmula

\[C_1V_1 = C_2V_2 \]
EJERCICIO

1. Calcular el volumen de la bureta más adecuado para realizar la siguiente determinación.

Assay – Dissolve about 300 mg de Miconazole, accurately weighed, in 40 mL of glacial acetic acid, add 4 drops of p-naptholbenzein TS, and titrate with 0.1 N perchloric acid VS to a green endpoint. Perform a blank determination, and make any necessary correction. Each mL of 0.1 N perchloric acid is equivalent to 41.61 mg of \(\text{C}_{18}\text{H}_{14}\text{Cl}_{4}\text{NO}. \) PM 416.13
Karl Fisher - volumétrico
• **Fundamento**

El método se basa en la relación cuantitativa que se produce entre el agua y un reactivo constituido por dióxido de azufre y yodo en piridina anhidra y metanol anhidro

- \[3\text{CsHsN} + 12 + \text{H2O} + \text{S02} \rightarrow 2\text{CsHsN} \cdot \text{HI} + \text{CsHsN} \cdot \text{S03} \]
- \[\text{CsHsN} \cdot \text{S03} + \text{CH3OH} \rightarrow \text{CsHsN} \cdot \text{HS04} \cdot \text{CH3} \]

Después de que el agua reacciona con el yodo libre se produce un cambio de color y el punto final de la titulación puede determinarse electrometricamente utilizando un microamperímetro, debido a que se produce una diferencia de potencial en el seno de la reacción.

La determinación depende de factores tales como las concentraciones relativas de los ingredientes del reactivo, la naturaleza del disolvente utilizado para disolver la muestra y la técnica utilizada en la determinación específica.
6.1 Electrometric Detection

KF reagents containing pyridine can cause problems in determining the end-point of the titration. This is due to the weak basicity of the pyridine. A special end-point technique was developed to overcome this problem. The end-point is said to have been reached when a defined potential (or current) is obtained and has remained constant for a specified length of time. This end-point delay is typical of the KF titration and is a feature of most modern instruments. These problems do not occur with pyridine-free reagents, as a stable end-point is quickly reached.
II. Estandarización del reactivo. Determinar el factor del reactivo de Karl-Fischer el día de su uso.

a) Con tartrato de sodio (para determinar cantidades de agua menores al 1.0%). Transferir alrededor de 36 mL

El factor equivalente de agua “F” en miligramos de agua por mililitro de reactivo, se obtiene por medio de la fórmula:

\[F = 2 \left(\frac{18.02}{230.08}\right) \left(\frac{p}{v}\right) \]

Donde:
18.02 = Peso molecular del agua.
230.08 = Peso molecular de tartrato sódico dihidratado.
p = Peso en miligramos del tartrato de sodio dihidratado.
v = Volumen en mililitros del reactivo usado en la titulación.

b) Con agua (para la determinación precisa de cantidades significativas de agua, 1.0 % o mayores). Proceder como se
b) Con agua (para la determinación precisa de cantidades significativas de agua, 1.0 % o mayores). Proceder como se indica en el inciso (a), agregando como sustancia de referencia, en vez de tartrato sódico, entre 25 a 250 mg de agua destilada exactamente pesada por diferencia. Para este propósito, usar una pipeta, jeringa o micropipeta precali- brada. Titular hasta el punto final y calcular el factor equivalente de agua “F”, en miligramos de agua por mililitro de reactivo, de acuerdo con la fórmula siguiente:

$$F = \frac{p}{v}$$

Donde:

$F =$ Factor equivalente de agua del reactivo de Karl-Fischer.

$p =$ Peso en miligramos de agua.

$v =$ Volumen en mililitros del reactivo usado en la titulación.
Using a suitable glass syringe, take up 25μL of distilled water. Add the water to the titration vessel after pre-titration and record the final titration volume in mL. Perform the standardisation at least three times obtaining results that agree within 0.1mL. (Alternatively, the %RSD (relative standard deviation) can be used to determine the agreement between results). Calculate the KF titre (T) for each result as follows:

$$T = \frac{0.025 \times \text{standard weight of 1mL water}}{\text{volume KF reagent used (mL)}}$$
14.3.2 Standardization

Standardization should be performed daily, since the titrant will absorb moisture over time.
• Determinación de humedad (Agua) en formas farmacéuticas

• Empleado para FF como: tabletas, liofilizados, cápsulas, granulados.
• Cambios en el % de Humedad pueden indicar que el sistema contenedor cierre no está protegiendo adecuadamente al producto.

• El incremento del % de Humedad puede afectar adversamente la estabilidad del ingrediente activo, por lo tanto es un parámetro clave en los estudios de estabilidad. En estabilidad normalmente se determina el % de Humedad por el método de pérdida al secado o por Karl Fischer.
• La precisión es afectada por la humedad ambiental, por lo que se usa un agente desecante en el equipo.

• La determinación de humedad debe ser la primera que debe llevarse a cabo en los estudios de estabilidad una vez que el contenedor ha sido abierto.

• El solvente debe ser cambiado si se tiene un exceso de excipiente.
Para muestras con menos de 1% se usa el KF volumétrico

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Composite</th>
<th>Standard material</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP Standard material</td>
<td>Composite 2</td>
<td>30 μL purified water</td>
</tr>
<tr>
<td>0–1% water</td>
<td>Composite 1 or 2</td>
<td>15 or 30 μL purified water or 100 mg sodium tartrate dihydrate</td>
</tr>
<tr>
<td>1–5% water</td>
<td>Composite 2</td>
<td>30 μL purified water or 100 mg sodium tartrate dihydrate</td>
</tr>
<tr>
<td>≥5% water</td>
<td>Composite 2 or 5</td>
<td>30 μL purified water</td>
</tr>
</tbody>
</table>

10.3.2.2 Standardization

As with any volumetric titration, standardization of the titrant with a primary standard is required. The most common primary standard used will be water. Other primary standards may include sodium tartrate or commercially prepared water standards. Table 10.1 provides a guide to reagent and standard selection.

For sample water content is less than 1%, coulometric moisture analysis is used, if feasible.
Karl Fischer Coulométrico

En comparación con la titulación volumétrica de Karl-Fischer, la coulometría es un micrométodo. El método utiliza cantidades extremadamente pequeñas de corriente y se usa para determinar el contenido de agua en el intervalo de 100 a 0.0001 %.
In a coulometric Karl Fischer method, the iodine required for the reaction is produced by the anodic oxidation of iodide.

\[2I^- \rightarrow I_2 + 2e^- \]

The iodine then reacts with the water that is present. The amount of water titrated is proportional to the total current (according to Faraday's Law) used in generating the iodine necessary to react with the water present. One mole of iodine reacts quantitatively with one mole of water. As a result, one milligram of water is equivalent to 10.71 coulombs. Based on this principle, the water content of the sample can be determined by the quantity of electricity required for electrolysis.
This method is useful where sample supply is limited or where it is necessary to measure very small amounts of water. It also has the advantage that it can be operated with an oven vaporiser unit which allows water to be determined in samples which would cause interference in direct titration.
8.3 Coulometric KF Reagents

Coulometric reagents are supplied as two solutions:

- Anode solution (anolyte)
- Cathode solution (catholyte)

The anolyte is a modified KF reagent that contains iodide instead of iodine. The cathode reaction takes place in the catholyte. This reaction must proceed so that the KF reaction by-products produced are not disturbed.
Buenas prácticas en volumetría

- Realizar por triplicado la estandarización (Normalización) de las soluciones.
- Usar material limpio e íntegro.
- Calcular previamente el volumen que se va a consumir, para determinar cuál es la capacidad de la bureta más adecuada.
 (El volumen consumido debe estar entre el 50 y 80 % de la capacidad de la bureta)
Buenas prácticas en volumetría

- Realizar una determinación en blanco para la corrección del volumen consumido por la muestra.
- Titular el blanco antes de las muestras.
- Preparar las muestras por duplicado.
- En el caso de medio no acuoso, debido a que el titulante se dilata o se contrae con la temperatura, más significativamente que el agua, es necesario corregir la concentración del titulante.