Orbitales Moleculares

Moléculas con más de dos átomos
H$_2$O (C$_{2v}$)

Three a$_1$ atomic orbitals give three a$_1$ molecular orbitals.

Predicts that the properties of water should be dominated by this lone pair, i.e., that it’s a good nucleophile.

Central oxygen atom’s atomic orbitals

LGO orbitals of terminal atoms H$_1$ + H$_2$
<table>
<thead>
<tr>
<th>Energías</th>
<th>1 (a_1)</th>
<th>1 (b_2)</th>
<th>2 (a_1)</th>
<th>1 (b_1)</th>
<th>3 (a_1^*)</th>
<th>2 (b_2^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>(O) 1 0.8779</td>
<td>0.0000</td>
<td>0.3331</td>
<td>0.0000</td>
<td>0.3440</td>
<td>0.0000</td>
</tr>
<tr>
<td>(p_z)</td>
<td>(O) 1 -0.1049</td>
<td>0.0000</td>
<td>0.8348</td>
<td>0.0000</td>
<td>-0.5405</td>
<td>0.0000</td>
</tr>
<tr>
<td>(p_y)</td>
<td>(O) 1 0.0000</td>
<td>0.7680</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(p_x)</td>
<td>(O) 1 0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(s)</td>
<td>(H) 2 0.3304</td>
<td>0.4529</td>
<td>-0.3100</td>
<td>0.0000</td>
<td>-0.5429</td>
<td>0.0000</td>
</tr>
<tr>
<td>(s)</td>
<td>(H) 3 0.3304</td>
<td>-0.4529</td>
<td>-0.3100</td>
<td>0.0000</td>
<td>-0.5429</td>
<td>0.5431</td>
</tr>
</tbody>
</table>

Energías:

- \(1 \ a_1 \): -36.828
- \(1 \ b_2 \): -17.582
- \(2 \ a_1 \): -14.523
- \(1 \ b_1 \): -12.317
- \(3 \ a_1^* \): 4.061
- \(2 \ b_2^* \): 5.333
Etileno

- Construir combinaciones lineales adaptadas por simetría (CLAS) con los orbitales s de los 4 átomos de hidrógeno

<table>
<thead>
<tr>
<th>D_{2h}</th>
<th>E</th>
<th>$C_2(z)$</th>
<th>$C_2(y)$</th>
<th>$C_2(x)$</th>
<th>i</th>
<th>$\sigma(xy)$</th>
<th>$\sigma(xz)$</th>
<th>$\sigma(yz)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_{1g}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B_{2g}</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B_{3g}</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>A_u</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B_{1u}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_{2u}</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>B_{3u}</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>