Como ejemplo de este procedimiento, se presentan los datos de un experimento en el cual se ha medido la resistencia eléctrica de una bobina de cobre como función de su temperatura. La tabla 3 muestra los datos, mientras que la tabla 4 contiene los resultados después de aplicar las ecs. (21)-(25). La figura 2 es una gráfica de los datos junto con la recta ajustada, con \(N = 10 \).

| Tabla 3. Resistencia como función de la temperatura de una bobina de cobre. |
|---------------------------------|-----------------|
| \(R \, (\Omega) \) | \(T \, (^\circ \text{C}) \) |
| 147.2 (1.7) | 21 (0.5) |
| 149.2 (1.7) | 25 (0.5) |
| 151.8 (1.7) | 30 (0.5) |
| 154.9 (1.8) | 35 (0.5) |
| 157.7 (1.8) | 40 (0.5) |
| 160.4 (1.8) | 45 (0.5) |
| 162.8 (1.8) | 50 (0.5) |
| 165.7 (1.9) | 55 (0.5) |
| 168.6 (1.9) | 61 (0.5) |
| 180.3 (1.9) | 83 (0.5) |
Tabla 4. Resultados en el cálculo con regresión lineal.

<table>
<thead>
<tr>
<th>CANTIDAD</th>
<th>ECUACIÓN</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{i=1}^{N} x_i$</td>
<td>\cdots</td>
<td>$445 , ^\circ C$</td>
</tr>
<tr>
<td>$\sum_{i=1}^{N} x_i^2$</td>
<td>\cdots</td>
<td>$22951 , (^\circ C)^2$</td>
</tr>
<tr>
<td>$\sum_{i=1}^{N} y_i$</td>
<td>\cdots</td>
<td>$1598.6 , (\Omega)$</td>
</tr>
<tr>
<td>$\sum_{i=1}^{N} x_i y_i$</td>
<td>\cdots</td>
<td>$72825.7 , (^\circ C , \Omega)$</td>
</tr>
</tbody>
</table>

m (21) $0.5361 \, \Omega/^\circ C$

b (22) $136.00 \, \Omega$

S_x (23) $0.22 \, \Omega$

S_m (24) $0.004 \, \Omega/^\circ C$

S_b (25) $0.19 \, \Omega$

Figura 2. Resistencia de una bobina de cobre como función de su temperatura.